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Coupled Mode Theory of Waveguides
with Conducting Interfaces

S. Khorasani! and B. Rashidian*

In this paper, the coupling coefficient of two waveguides with conducting interfaces is calculated
analytically. It is shown that the control of interface charge densities via a transverse voltage
leads to the control of the coupling. To derive the coupling coefficient, the basic Coupled Mode
Theory (CMT) with paraxial approximation is improved to include the effect of conducting
interfaces. The analysis is performed independently for TE and TM polarizations. Several
direct applications of this effect including a multiplexer, a coupler and a modulator/switch and

programmable grating are introduced.

INTRODUCTION

The Coupled Mode Theory (CMT) is a well-known
and widely used method for analysis of electromagnetic
fields in layered media [1-7]. It has been used for anal-
ysis of simple [8] and tapered [9,10] optical dielectric
waveguides. Improved variations of CMT have been
reported for analysis of anisotropic waveguides [11,12]
and anisotropic waveguide modulators [13]. Also, CMT
in variational form has found applications in the study
of optical couplers [14]. CMT has been used in quan-
tum mechanics for analysis of electron wave directional
couplers [15] and coupled-cavity lasers [16]. Other
studies have considered the extended CMT for grating-
assisted codirectional couplers [17] and gain coupled
DFB lasers [18]. The analysis of nonlinear waveguide
grating using CMT has also been reported in [19]. More
recently, an exact CMT for multilayer interference
coatings with arbitrary strong index modulations is
reported [20]. A valuable review on CMT can be found
in [3].

Recently, several applications of layered struc-
tures with conducting interfaces, including an inte-
grated optical modulator [21-23], an integrated optical
memory and optical transistor [24] and programmable
diffractive element {25], have been reported. In these
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structures, a two-dimensional free interface charge layer
is generated at the dielectric interfaces by a transverse
voltage, which results in conduction at the interfaces.
In general, a conducting interface can be realized
through all, or some of, the following effects [26]:

1. The inversion layers in Metal-Oxide-Semiconductor
(MOS) structures;

2. The trapped charge in heterojunctions, due to the
trapped electron (hole) gas at the edges of con-
duction (valence) bands, similar to High-Electron-
Mobility-Transistors;

3. The depletion layer charge resulting from the initial
imbalance between the Fermi levels of the adjacent
dielectrics;

4. The trapped charge in the interface traps and
interface states and the associated depletion layers.

A report {27] based on Type 2 interface charge
has discussed how the propagation of plasma waves in
a HEMT can be used to implement a new generation
of terahertz devices. Kuijk et al. [28-30] have reported
modulators based on Type 3 interface charge in the
far-infrared range. Also, experimental verification of
transport effects associated with Type 4 interfaces has
been recently reported in [26]. Finally, the coupling
between waveguides with conducting interfaces has
been proposed for implementing programmable grat-
ings in [25,31].

In this paper, CMT is improved to include the
effect of the interface charges. The analysis is done
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for TE and TM modes separately and closed form ex-
pressions are obtained for the resonant coupling modes.
The limiting cases of the results are in agreement with
the previously reported coupling coeflicients.

In the following section, the basis of the CMT is
presented. The next section presents the mathematical
derivation of coupling coefficients for resonant modes.
Then, several numerical examples and typical applica-
tions are discussed and, finally, a short conclusion is
given.

COUPLED MODE THEORY

In the coupled mode theory it is supposed that the
isolated waveguides, which have independent orthogo-
nal modes, become pertubed when coupling occurs [1-
7]. For the orthogonality assumption to be applicable,
it is necessary for all dielectrics to be lossless. It
is pointed out that coupled mode theories based on
non-orthogonal modes have also been reported [32],
however, the approach in this paper is consistent with
the assumption of orthogonality, as follows.

In a recent study, waveguide structures were dis-
cussed with purely imaginary interface conductivities
in the frequency region of interest, so that all structures
were lossless [21]. Therefore, it would be possible to
modify the coupled mode theory to include the effect of
interface charges without destroying the orthogonality
of modes. In order to develop the coupled-mode
theory for such structures, an improved transfer matrix
method has already been developed to take the effect
of interface conductivities into account [33,34]. It is
remarkable that based on this approach, a new efficient
variational approach for extraction of eigenmodes has
been reported in the layered structures being discussed
here [35,36].

By expansion of the total field, here denoted by
U(r), in the structure, one can write:

Z ) exp(=5Bm>2), (1)

where 3,, and u,, () are the propagation constant and
the eigenmode of the mth waveguide in the absence
of other waveguides, respectively, and A,,(z) is the
envelope of the propagating mode across the z-axis,
to be found later through coupling equations. The
eigenmodes u,,(x) satisfy:
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wliere nn,,(z) is the refractive index function corre-
sponding to the mth waveguide, in the absence of all
other waveguides. Also, in Equation 1, the total field,

427
U(r), satisfies:
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where n(x) is the refractive index function of the whole
system, representing all waveguides at once.

Insertion of Equation 1 in Equation 3 and using
Equation 2 results in:
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where the second order derivatives are neglected due
to the paraxial approximation. In fact, the paraxial
approximation holds for many one- and even two- or
three-dimensional optical systems [1,2]. As will be
shown, the presence of interface charges, in general,
reduces the coupling strength, in further justification
of this approximation. In general, if the separation
distance between two adjacent waveguides is smaller
than the tunneling length of energy outside the guiding
layer of the waveguide, then the coupling is no longer
weak and the approximation becomes invalid. A
quantitative measure for optical tunneling length from
film into cladding or substrate layers is given by the
Goos-Héanchen shift length [4,5]. For all practical
purposes, however, the paraxial approximation can be
used and quite often leads to very accurate results [1,2].

According to the orthogonality of modes, one gets:

/ uy,(z).ug"(z)de = (mlk) =0, m#£k. (5)

Here, the asterisk denotes the complex conjugation.
Therefore:
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TAk(E) = = TSR RIR) T (kA2 fm) A (2)
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in which An2, = n? —n?2 is the change in the refractive
index of the structure due to the presence of the
mth waveguide. In other words, the mth waveguide
introduces a perturbation to the overall function of the
index of the refraction. Also:

(k}jAnZ |m) = /uk(x).Anfn(x)um*(z)d:c. (7)
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By definition, the coupling coefficients are given by:

2
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Therefore, Equation 6 can be rewritten as:

(ile) (il Anglj). (8)
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which are the so-called coupled mode equations. In
general and within the range of validity of paraxial
approximation, the coupled mode Equations 9 can be
solved easily to find an exact description of electro-
magnetic fields. However, it is necessary to compute
the coupling coefficients, k,;, first. The problem is
greatly simplified if all the waveguides have an identical
propagation constant, say §. Under these situations,
the set of Equations.9 can be simplified to:

%Ak(z) =—j Z 'ikmAm(z)v (10)

where the coupling coefficients, &;;, are:

2
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COUPLING COEFFICIENTS

In a multilayer dielectric slab waveguide, the pres-
ence of interface charges shift the effective index of
propagation. This effect has been described in detail
for a dielectric waveguide whose interfaces carry free
charges [21]. Examples of such structures include
quantum-well trapped charges in semiconductor het-
erostructures [21] and surface state charges on the
surface of a semiconductor exposed to vacuum [22].

Note that in contrast to conducting metallic
waveguides, the presence of extra free carriers at
dielectric interfaces results in a completely different
optical effect. In metallic waveguides, eigenmodes
are determined solely by geometry and not bulk con-
ductivity, while in dielectric waveguides with con-
ducting interfaces the eigenmodes are influenced by
both geometry and finite interface conductivity. As a
matter of fact, the interface conductivity has a different
physical dimension as well, given by Q7! and not
1~ 'em™!, which is the dimension of bulk conductivity.
Correspondingly, the effect of interface charges enters
the formulation by making the tangential magnetic
field discontinuous across the interfaces [21].

Now, the resonant coupling coefficients are de-
rived, as defined in Equation 11, by calculating the
resonant modes through the interaction between iden-
tical configurations. In this case, only resonant modes
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Figure 1. Two-identical waveguides with a displacement
between their symmetry axes.

are considered that are guided modes with the same
propagation constant. Actually, the coupling between
non-resonant modes is usually ignored in coupled-mode
analysis of optical structures when a resonant mode
exists. The reason is that only coupling between reso-
nant modes with an identical propagation constant is
dominant and coupling between non-resonant modes is
so weak that it can be ignored [1,2]. On the other hand,
the eigenmodes of individual waveguides are functions
of their own interface conductivities [21], so that the
requirement for having a resonant mode also demands
identical interface conductivities. Consequently, the
coupling coefficients must be functions of interface
conductivities. Results of calculations presented here
are shown to be in agreement with this prediction.

A typical structure of two coupled slab waveg-
uides with conducting interfaces is shown in Fig-
ure 1. Following the above considerations, both slab
waveguides have the same refractive index profiles and
interface conductivities, so that the structure has an
even symmetry with respect to the symmetry axis
at * = s/2. Due to different mode behavior and
formulations, separate analyses are presented for TE
and TM polarizations.

TE Polarization

The eigenmodes are usually normalized by the assump-
tion of total unity radiation power per unit width of the
waveguide. Hence, the normalization equation of the
TE mode for the mth waveguide is expressed as:

/ B,.(x).3dz = —% / By (@) Hom* (2)dz :1(,12)
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in which P = 1 E x H* is the phasor of the time-average
Poynting vector. The above can be rewritten as:

2wpg

3 (13)
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Now, it is supposed that a symmetric waveguide, with
the film thickness of d and the refraction indices ns >
ny, is given with the z-axis being the symmetry axis.
So, the electric field of its eigenmode can be expressed
by:

Ey(z) =
Ef exp(—jkiz), x> %
Ef exp(—jkez) + E5 exp(jkat), -—% <z < % ,
E[ exp(jkix), T < —%
(14)
in which:
. Qw?
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Therefore, Equation 13 can be rewritten as:
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Simplifying Equation 16 gives:

—-ﬂ e 7he ~12 + 2 +2 -2
2wu0{ %5k BT + |ESI?] +dl| E5 |? + | B5 )
+ Qﬂlf—d)l‘e (B E7]} =1. (17)

Now, if ¢;; and A are the elements and the determi-
nant of the TE transfer matrix, 15Q2-1 [33,34] (c.f.
Appendix), it is concluded that:

EQ_ = _E;.(h_l = TTEE;,
q22
+ gt A +
Ef =E[ = Ey — =trgk]. (18)

q22
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Here, r = —g21/¢22 and t = A/gqes are the reflection
and transmission coeflicients, respectively, being func-
tions of interface conductivity. Plugging the values
of ¢;; and A from Appendix [33,34] in Equation 18
and inserting Equation 18 in Equation 17 gives the
following equation for normalized electric field:

3 [ o—jkid
Ef=(22) (S |treP +d
2 (ﬂ [ijllTE[++

Sin(kg %

kz Re{rTE}]

(19)

where a trivial constant phase factor has been ignored.
It is pointed out that the presence of interface
charges with the interface conductivity o has no effect
on the integral in Equation 186; the effect of interface
charges indeed enter Equation 19 through the elements
of the transfer matrix, g;;. To illustrate this situation,
the interface charge layer can be replaced with a
dielectric, which has an infinitesimal thickness, §, and
permittivity, n2eo — jo/wé [21]. Therefore:

+d/2+46/2
lims_.q —% / E (z)H,*(z)dz =~
+d/2-6/2
lims_o i|Ey]25 =0, (20)
2wpg

where the plus or minus sign, respectively, determines
the integration across the upper or lower interface
charge sheet. It is assumed that a second identical
waveguide, whose symmetry axis is placed at a dis-
tance, s, from the symmetry axis of the above waveg-
uide (see Figure 1), has introduced a perturbation to
the initial field. The coupling coeflicient is given by:

[o

k= ? / E;An2E,, *dz, (21)
where
An? =

0, z<s—¢

{n%—n%—jﬁo Ba—s—9+6@—s+9)], s-L<z<s+%
2 b

(22)

Here, 6(.) represents the Dirac delta and should not
be confused with é in Equation 20. Because of the
similarity of waveguides, one has Ey,(z) = Ejy4(z — s)
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and, thus, the coupling coeflicient is obtained as:

g
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It should be noted that the computation of
Equation 23 is possible by taking Equation 19 into
consideration.

When an even symmetry is present in eigenmodes,
E(z) = E(—z) and rrg=1; so, the above is simplified
as:

; d
k = — jotrg|ES |2e 7% cos (l@%) cosh (jkl 5)

wWEe
+ To(ng - n})tre|ES [*Re
e € MEimE(s+8) _ mithi—ke)(s—4)
x { g7Ir28 - .
—j (k1 — k2)
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Similarly, when the eigenmodes are odd, E(z) =
—~E(—z),rrg = —1 and:

. d d
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Note that the TE coupling coefficient resulting from
even eigenmodes is purely real, while it is purely
imaginary between odd eigenmodes (if the interface
conductivity, &, is purely imaginary).

TM Polarization

The computation of TM coupling coefficients is quite
similar, with the exception that the normalization
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condition Equation 12 should be rewritten as:

17 *
2 /Hym(x)Ezm (z)dx
:2560 /n_2(x)|Hym($)|2d$=1. (26)

To compute field amplitudes, the following expansion
is employed:

Hy(x) =
HY exp(—jkiz), r>¢
Hf exp(—jkex) + Hy exp(jkoz), —S<z< g,
HT exp(jkiz), z < —%
(27)
where:
H2_ = —H;gzl— = TTMH;_,
g22
+ - + 8 _ +
H3 = Hl = H2 q—2 = tTMHZ . (28)
2

Here, ¢;; and A are the elements and the determinant
of the TM transfer matrix, vyQ2-1 [33,34] (c.f. Ap-
pendix). Therefore, the normalization condition results

B 2jn%k1 2
1
sin(kad) -4
——R 2
n%kz e{TTM}] ’ ( 9)

where an arbitrary constant phase has been omitted.
Relations 23 to 25 can be used by making the replace-
ments ES — HJ and €y — po. Finally:
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For even eigenmodes with H(z) = H(—z) and rpy =
1, one gets:

; d d
K=— jg—ZatTMIHQLPe_””S cos (k‘gg) cosh (jkl —2~>

w
+ 220 0f — nb)taulHf PRe
x e—jlc“e_j(kx—kz)(s+%) _ omilk1—k2)(s—$)
_j(kl - kz) .

(31)

while for the odd eigenmodes with H(z) = —H(-z)
and rty = —1, it becomes:

K =22 oty Hf Pe™7%1 sin (’“#) sinh (j klé)
o 2 2

Who
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X e—jkzse—j(kl—kz)(s+%) _ e ilhi—ka)(s—4%) |
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It is seen again that the TM coupling coefficient
resulting from the even eigenmodes is purely real, while
the coupling coefficient between odd eigenmodes is
purely imaginary (if the interface conductivity, o, is
purely imaginary).

EXAMPLES AND APPLICATIONS

To investigate the effect of interface conductivity on the
coupling between waveguides, Equation 24 is plotted
against the absolute value of ¢ as shown in Figure 2.
Here, the parameters are An = 5 x 1073, n; = 3 and
s = 2d = 6A = 6um. These are the same values as

used in [1]. The effective index of the propagating
k™! (mm)
14}
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Figure 2. The TE coupling length £~! vs the absolute
value of interface conductivity (s = 6 um).
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guided modes is found by solving the properly modified
dispersion equation [21]. As can be observed, the
coupling length for zero conductivity is about 2.3 mm,
being in agreement with the value reported in [1, p
463].

Here, the coupling length increases with interface
conductivity. The main reason for this behavior could
be related to the dramatic decrease of the transmission
coeflicient, ¢Tg, in Equation 24; indeed, in the limit of
infinite interface conductivity, one has g = 0. The
more the interface conductivity, the more confined the
guided mode.

To clarify the argument, the field profiles of
two waveguides have been plotted in Figure 3a for
TEp eigenmodes in the absence of interface charges.
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Figure 3. The TEq mode profiles of two adjacent
waveguides (dashed curves). As can be seen, the modes
are better confined in the presence of interface charges.
The horizontal dashed line represents the normalized
propagation index A3/2x. Solid curves show the profile of
refractive index for two waveguides.
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Here, the solid curve shows the profile of refractive
index corresponding to two waveguides and the hor-
izontal dashed line represents the normalized prop-
agation constant, A3/2m, which has been found to
be 3.0033. In Figure 3b, calculations are done for
the same structure but with an interface conductiv-
ity of ¢ = —3j0.2/n9. The normalized propagation
constant, A3/27, here has shifted down to 3.0023.
While the electric field is continuous, its derivative is
not. The reason is that the derivative of the electric
field describes the tangential magnetic field, which is
discontinuous due to the interface current induced by
the tangential electric field (see Appendix). As a result,
the evanescent tail of the electric field decays more
rapidly outside the film layer and the modes are better
confined.

Therefore, the second waveguide is less affected
by the guided wave propagating in the first, so the
coupling length increases. Meanwhile, the interface
conductivity shifts the propagating effective index so
that more energy is confined within the bulk of film
layer. This phenomenon behaves differently for larger
distances between waveguides, as plotted in Figure 4

(s = 10pm). Contrary to expectation, the cou-
pling length initially decreases, reaching a minimum
at about ¢ = —3j0.25/m9 and then starts increas-
ing.

This unusual behavior can be explained as follows:
Interface conductivity has two different effects on the
guided and coupled modes. The first leads to the better
confinement of modes in the waveguide, which results
in increasing the coupling length (as in Figure 2). The
reason is that the magnitude of transmission coefficient
decreases with increasing the interface conductivity,
as just described above. Comnsequently, the second
waveguide is more inclined to steal energy from the
evanescent tail of the guided propagating mode of
the first waveguide, resulting in a decrease in cou-
pling length. These two mechanisms compete with

«~ ! (mm)
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90}
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Figure 4. The TE coupling length k™' vs the absolute
value of interface conductivity (s = 10 pm).
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each other, so that a behavior shown in Figure 4
results.

Figure 5 shows the variation of TM coupling
length with interface conductivity. It is observed that
in the absence of interface conductivity, the value of
21 mm is obtained for the coupling length, being
about 9 times larger than that of TE mode. This
is due to the small refractive index contrast of the
waveguide, resulting in a weaker coupling of the TM
modes. Compared to Figure 2, the coupling length is
also increasing, but at a much higher rate. Increasing
the separation between the waveguides to 10um, as
plotted in Figure 6, does not change the general
behavior, contrary to the TE mode. The reason
behind this difference could be explained by noting that
the presence of interface charges introduces an abrupt
drop in the profile of the magnetic field. Therefore,
TM modes enjoy a better confinement compared to
TE modes. The competing mechanism is, however,
too weak to introduce a decrease in the coupling
length.

An immediate conclusion of the above discussions

1o & (cm)

nolo|

0.05 0.1 0.15 0.2

Figure 5. The TM coupling length £~! vs the absolute
value of interface conductivity (s = 6 um).
300
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Figure 6. The TM coupling length k™! vs the absolute
value of interface conductivity (s = 10 pm).
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is the feasibility of a programmable optical coupler.
As a general rule, the coupling length between two
waveguides can be controlled by controlling the density
of interface charges. The controlling mechanisms
can have quite different natures [21,26], depending
on the physical origin of the interface charges, as
classified in the introduction. In practice, it is easy
to obtain charge densities as high as 3 x 10'3 ¢cm™2
across the interfaces of large bandgap semiconductors.
Still larger charge densities can be obtained in the
depletion layers of highly doped p — » junctions.
However, surface state interface charges usually have
much lower densities and are limited to 5 x 10!
cm~2 [22].

By extension of this structure and using single
mode waveguides, a Mach-Czhender-like [37] optical
switch or modulator can be constructed. There-
fore, by stacking the waveguides and keeping in-
dependent control on the interface charges of each
waveguide, a multiplexer results. Furthermore, if
the structure is allowed to become periodic, a pro-
grammable grating is obtained, whose mode diffrac-
tion efficiencies, polarizations and even directions can
be controlled. This idea and further application
in novel optical devices are explained in detail else-
where [38,39].

CONCLUSIONS

The coupled mode theory has been improved to take
the effect of conducting interfaces into account. Closed
form expressions for the coupling coeflicient of identical
symmetric waveguides have been found separately for
TE and TM modes. The results show that the
coupling becomes generally weaker when the interface
conductivity is increased. Applications such as in
modulators, switches, multiplexers and programmable
gratings have been remarked.
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APPENDIX
Transfer Matrices

Suppose that a layered structure is composed of { + 2
slabs with refractive indices n, = (en/e0)/3(m =
1.--1+4 2) having [ + 1 interfaces normal to the z-
axis at Xn(m = 1---1 4+ 1) and a wave which is
propagating along the positive direction of z-axis so
the y-component of the wavevectors is zero. The mth
interface is allowed to have an interface conductivity,
Om, SO that the tangential component of the electric
field across the interface produces a proportional inter-
face current density as follows:

Jn(2) = Om[E X Epn(Xm, 2)] X %, (A1)

where E stands for the electric field vector. It should be
noted that the dimension of the interface conductivity,
Om, is equal to 27! = A/V | being different from the
bulk conductivity. Correspondingly, the dimension of
J is A/m. It is convenient to describe the field distri-
bution in the mth dielectric by a linear combination of
two plane waves as follows:

Unn(z,2) = (Ufe™7*n" 4
Upet75n®) exp(—jBz), (A2)

where U represents the electric or magnetic field
vectors E or H and U* and U~ are constant complex
phasors representing the up and down travelling waves,
respectively. The presence of conduction at the inter-
face has no effect on the basic reflection and refraction
mechanisms as discussed in [21], so that the Snell law
for angles is applicable.

Continuity of the tangential electric field at the
mth interface with = X,,,, reads (m = 1---1 + 1);

En(Xm2) X & =Epp1(Xm 2) X £, (A3)

while the tangential magnetic field is discontinuous
across the interface as [32,33]:

[Ho (X, 2) = Hyp 1 (X, 2)].(& X 6)€ = T,
(A4)

where € is a unit vector parallel to J,,(z). These
boundary conditions can be simplified when the electric
or magnetic field has a y component only, which
refers to é = § for TE and é = 2 for TM modes,
respectively.
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Applying the interface conditions together with
Equation A2 results in solutions of the form:

{058 us
Ur_n+1:| = Qm—»m-{-l [U—] . (AS)
m+ m

Here, Q—m+1 is referred to as the transfer matrix
from the mth to the m + 1th layer, given by [32,33]:

m
5T _TE,TMPi ;
¥ 1‘) -
T 2k
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X {—j[(—l)ikm+l - (_1)jkm]Xm}» (Aﬁ)

in which:
TEPLy = kma1 + (= 1)k + (=1) wpoom,
(A7a)
T™Pi; = km+l+(_1)i+j€:'$km +
(=1 T k1. (A7b)
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